

Predictive Modelling Metadata Interchange Format

Contents:

	Overview of the Predictive Modelling Metadata Interchange Format
	Very Simple Example

	Validity and Well-Formedness

	Extensibility

	Generation

	Top-Level Structure
	Required Top-Level Keys

	Optional Top-Level Keys

	Field Descriptions
	Required Keys for Field Descriptions

	Optional Keys for Field Descriptions

	Data Description
	Optional key: flatfile

Indices and tables

	Index

	Module Index

	Search Page

Overview of the Predictive Modelling Metadata Interchange Format

The Predictive Modelling Metadata Interchange Format (PMMIF) is designed
to facilitate the exchange of data for use in predictive modelling.

There are two initial use cases it seeks to support:

	datasets for conventional predictive modelling of integer, continuous
and categorical outcomes

	datasets for uplift modelling of integer and continuous outcomes

PMMIF has the following goals:

	Capability to describe datasets fully and accurately

	Machine-readable metadata

	Initial expression in JSON, with future ability to support other representations such as XML, YAML, HTML etc.

	Reasonably readable in raw form by humans

	Enough extra metadata to dectect faulty reading of the data

	Ability to write programs to verify both well-formedness of the PMMIF metadata description and to verify that the data conforms to the specification contained in the metadata

	Extensibility

	Simple minimum requirements

	Inclusion of key structural information, e.g. the role that various fields play in modelling.

	Ability to describe all (or nearly all) of the datasets in the Machine Learning Repository at the University of California, Irvine, and also some example datasets for use with Uplift Modelling.

	Each .pmm file currently describes a single dataset, stored as a flat file, consisting of a number of records, each with a fixed set of named fields. Later enhancements will allow multiple flat files to be documented together.

Very Simple Example

Here is a very simple example of a .pmm file in the PMMIF format,
hillstrom3.pmm:

{
 "pmmversion": "0.1",
 "name": "hillstrom",
 "recordcount": 64000,
 "fieldcount": 3,
 "fields": [
 {
 "name": "recency",
 "type": "integer",
 "role": "independent",
 "tags": [],
 "stats": {
 "nnulls": 0,
 "nuniques": 12,
 "min": 1,
 "max": 12,
 "mean": 5.763734375
 }
 },
 {
 "name": "history_segment",
 "type": "string",
 "role": "independent",
 "tags": [
 "ordinal"
],
 "stats": {
 "nnulls": 0,
 "nuniques": 7
 },
 "values": [
 "1) $0 - $100",
 "2) $100 - $200",
 "3) $200 - $350",
 "4) $350 - $500",
 "5) $500 - $750",
 "6) $750 - $1,000",
 "7) $1,000 +"
]
 },
 {
 "name": "conversion",
 "type": "boolean",
 "role": "dependent",
 "tags": [],
 "stats": {
 "nnulls": 0,
 "nuniques": 2,
 "min": 0,
 "max": 1,
 "mean": 0.00903125
 }
 },
],
 "data": {
 "flatfile": {
 "name": "hillstrom3.csv",
 "format": {
 "separator": ",",
 "quote": "\"",
 "escape": "\\",
 "nullmarker": "",
 "headerrowcount": 1
 }
 }
 }
}

Note that not all of the data shown here is required for every PMMIF file.

Validity and Well-Formedness

PMMIF borrows a useful pair of notions from XML,
namely those of well-formedness and validity.

A PMMIF (.pmm) file is well-formed if it conforms syntactically
to this definition, i.e. if it is valid JSON, in UTF-8, contains all
the required elements and the types and structures of all the elements
are correct. To be well-formed, an PMMIF file should also be
internally consistent; for example, if a number of fields is specified,
it should be the same as the number of fields actually described in the
file. More generally, a .pmm file is well-formed if there are
no errors that can be detected without looking at the datafiles it
describes.

By contrast, an PMMIF file is valid only if the datafiles it
refers to exist and are consistent with the metadata in the
.pmm file.

Extensibility

Extra keys may be added to any of the dictionaries used to define PMMIF
provided those keys begin with a capital letter. This allows users to embed
arbitrary extra information in a .pmm file without significantly compromising the ability of PMMIF checkers to detect errors such as mis-typed keys.

Generation

Top-Level Structure

Version 0.1 of the PMMIF format is only expressed as JSON as a
dictionary with nested elements.
Some elements are mandatory, while others are optional.
The order of keys does not matter.
Indentation and layout of the JSON PMMIF file does not matter,
but it is strongly recommended that it is formatted using indentation
of four spaces and separated elements on separate lines, as shown
below, to aid human readability.

All text elements are case-sensitive.

The PMMIF file must be encoded as UTF-8 and must have the extension
.pmm, and the flat file must also be encoded as UTF-8.

Required Top-Level Keys

	pmmversion (string): the version of PMMIF to which the file conforms

	recordcount (integer): the number of records in the dataset

	fields (list): a list of field descriptors as specified below

Optional Top-Level Keys

	data (string): information about the source and format of the data described in the data dictionary, most commonly a flat file

	name (string): a name for the dataset

	description (string): a description of the dataset (string)

	contributor (string): the contributor of the dataset

	fieldcount (integer): the number of fields. Should match the length of the field list if specified.

	data (Data description object): information about a flat file
(“CSV file”) containing the data.

Field Descriptions

Fields are described by a dictionary with some required and some optional keys. provision of all relevant keys is recommended, especially summary statistics
such as min, man, nullcount, uniquevaluecount etc. is strongly recommnded.

Required Keys for Field Descriptions

	name (string): the name of the field. PMMIF does not
place any restrictions on the field names, but it is
recommended that they always start with a letter and contain
only letters, numbers and underscores for maximum cross-system
usablity. Field Names are case sensitive, but it is recommended
that multiple fields with names that differ only in capitalization
are not used, again to maximize cross-system compatibility.

	type (string): the type of the field.
PMMIF recognizes the following field types:

	boolean — values that are either true or false

	integer — integer values, possibly signed

	real — floating-point values

	string — string values, encoded as UTF-8

	datestamp — a date-and-time stamp value, with or without a time zone, in a format to be specified with another key, format, that is required when the type is datestamp.

These strings are the only allowed values for field types.

	role (string): the role that the field plays in modelling.
PMMIF requires that all fields be classified in one of the
following ways to make clear its role in modelling:

	independent — a value that can be used in the model as an input for making predictions (also known as a left-hand or a predictor variable)

	dependent — a value to be predicted by the model (also known as an outcome, an objective, a target or a right-hand variable).

	treatment — a variable that describes which of a number of treatments a customer, patient or user (record) received. The values are not mandated, but it is recommended that one treatment be nominated as the control, using the control key. Treatment fields may be integers, strings or booleans; if not specified, 0, False, “c”, “control” (in any case) will be preferred as control indicators.

	weight — some kind of weight field, such as a case weight.

	validation — an indicator of a fixed set of partitions of the data into different cross-validation segments. No specific interpretation is put on the segments by PMMIF, though this can certainly be specified in notes.

	auxiliary — some other kind of field to be used as none of the above, but perhaps to be used; for example, this might be a customer value field, in cases where this is to be used neither for prediction nor as an outcome, but might be used in ROI calculation, for example.

	ignore – a field that should be discarded.

Optional Keys for Field Descriptions

There are various kinds of option keys that we may distinguish:

Clarification Keys

	
	tags. Tags provide extra information afbout how to use or interpret the data in a field. Recognized tag values are:

	
	categorical: this applies to a string field or integer fields and indicates that the different values represent distinct categories that are not ordered but which can sensibly be used for analysis.

	ordinal: for string fields, this indicates that the strings represent some kind of rank. In this case, the values key should always be specified and should list the values in rank order, from low to high.

	unique: this indicates that there are (should be) no duplicate values in the field

	maximize or minimize: While the goal of predictive modelling is typically to fit the data, it is often the case that the records of interest are either the higher or lower values, and for reporting, it is often useful to know which. A maximize tag means that the high values are of primary interest (e.g. for a response problem. Correspondingly, minimize means that the low values are of more interest (e.g. for example, when customer attrition is marked as a 1).

	values.

Summary Statistics

	stats

Annotations

	longname

	description

Data Description

PMM is primarily for describing metadata associated with datasets.
However, it is also useful for it to be able to describe how data
is stored. The data section allows this.

Optional key: flatfile

This describes data stored in a flat file (often referred to generically
as “CSV” files, originally standing for comma-separated file, but now
sometimes used even for files with other separators).

name

The name describes where to find the data on disk.
It can be any string, and can be a full path
(e.g. "/usr/local/data/hillstrom.txt") or a relative path
(such as ("hillstrom.txt")).

format

This describes information about how the data is stored in the flat file.

There are three mandatory keys:

	encoding (string): "UTF-8" is recommended.

	separator (string): Usually a single character, often ",".

	headerrowcount (integer): number of rows in the flat file before the data (most commonly containing field names).

There are also optional keys:

	
	quote (string): Usually empty (""),

	a single quote ("'") or a double quote ("\"").
There is no provision for multiple quote characters at this stage.
It is recommended that flat-file readers based on PMM interpret
always accept unquoted strings even if a quote character is present.

	escape (string): Usually backslash ("\\"). The escape character
is used primarily to all the quote character and itself to be
included in strings by preceding them with the escape character.
If set to the empty string, there is no escaping.

Regardless of the setting of escape, flat file readers may choose to
accept escape sequences for special characters, especially \n
for newline.

	nullmarker (string): This is used to describe how nulls (missing
values) are listed in the file. If not specifed at all, null values
are not allowed in the file. Often set to the empty string ("")
or a marker such as NULL.

	dateformat (string): This describes the datestamp format used
in the file. When writing data, it is normally preferable to
use the same format for all datestamp fields. However, individual
fields can also specify a date format, which will override this
overall setting. This is necessary if a file already contains dates
in mixed formats.

Future extensions

	End-of-line nulls (cf. excel)

	Bad encoding handling?

	Byte-order markers

	Strictness specifiers

	Literal newlines in files

Index

 nav.xhtml

 Table of Contents

 		
 Predictive Modelling Metadata Interchange Format

 		
 Overview of the Predictive Modelling Metadata Interchange Format

 		
 Very Simple Example

 		
 Validity and Well-Formedness

 		
 Extensibility

 		
 Generation

 		
 Top-Level Structure

 		
 Required Top-Level Keys

 		
 Optional Top-Level Keys

 		
 Field Descriptions

 		
 Required Keys for Field Descriptions

 		
 Optional Keys for Field Descriptions

 		
 Clarification Keys

 		
 Summary Statistics

 		
 Annotations

 		
 Data Description

 		
 Optional key: flatfile

 		
 name

 		
 format

 		
 Future extensions

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

